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C O N J U G A T I O N  O F  T H E  C H A N N E L  A N D  F I L T R A T I O N  F L O W S  

O F  A V I S C O U S  I N C O M P R E S S I B L E  F L U I D  

V.  N .  M o n a k h o v  a n d  N .  V .  K h u s n u t d i n o v a  UDC 532.54 

This paper is devoted to the problem of conjugation of high-velocity flows of a viscous fluid in wells or open channels 

and filtration flows in a porous medium. Usually in this case the fluid motion in a well (channel) is described by balance 

relationships [1-3] or by a hydraulic approximation using St. Venant's equations and their modifications [4]. This approach is 

based on the assumption that the relative velocity of conjugate flows is small. When the velocity is high enough, interaction 

between conjugate flows is possible only through an intermediate boundary layer close to the interface. 
Below we present different variants of conjugation of such flows in the context of the boundary layer approximations 

for both flows. 

In the latter case a class of  self-similar regimes of flow is found and solvability of the boundary problems is established 
for mutually perpendicular boundary layers in a well and in an adjoining porous medium. 

1. Sta tement  of  the Problem.  The plain steady motion of an incompressible fluid in a well (channel) is governed by 

the Navie r -S tokes  equations 

where u = (u, v) is the vector of  the velocity of fluid flow of density p = 1;/~ = const is the viscosity; p = P0 + pgh, P0 

is the pressure; g = g V h is the vector of acceleration of gravity; F = 0. 
The filtration fluid flow in a region D 2 adjoining to a region D 1 is described by the Navie r -S tokes  equations also, 

where, due to the assumption of the filtration theory, the resistance forces F are presented in the form F = - ku, k(x, y) = 

m/~k -1,  where m is the porosity, and k is the permeability of the porous medium (v = mu is the filtration velocity) ([1, p. 44- 

46] and [3, p. 159]). Note that the equations of the Navier-Stokes  type are used in [2] to describe the fluid filtration in a 

granular media. 
We restrict ourselves to the problems of conjugation of the filtration fluid flows in a porous medium (layer) and in a 

gallery of imperfect wells (a "plant well" or simply a well) [1-3, 5] corresponding to the vertical cross-section of a layer (g 

= ( - g ,  0)). 
Let in the domains D 1 and D 2 the fluid flows be mostly directed along the OX and OY axes. Then in the conditions 

of approximation of the boundary layer we can use the following equations instead of the Navie r -S tokes  equations: 

u V u  = / ~ u  w -  Px, V"  u = C, ( x , y )  ED1; 

u V v = / z v  - p - , l o ,  V �9 u = 0, (x, y) ~ 19 2. 

(1.1) 

(1.2) 

The vector u of  the velocity of  flow and the pressure p are considered to be continuous on the line of  conjugation of 

the flows (F = I ) IND2) :  

Iu l  = 0 ,  I p l = 0 , ( x , y ) ~ r .  (1.3) 

Here [f] = fir2 - flr~; rk = r c 0D k (k = 1, 2); f[aDk are the boundary values o f f (x ,  y), (x, y) EOD k. 
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Note that, taking into account the direction of the filtration flow after the substitution x = ~7, Y = - ~, u = V, v = 

- U ,  Eqs. (1.2) with X = 0 transform into Prandtl's equations (I.1) of the boundary layer for U(~, ~7), V(~, ~7). 

The experiments in [6] on fluid flows near the porous surfaces show the slipping effect, and a simple model is given 

to describe it. 

Let for definiteness F: y = 0 be a sewing line and the domains D1; y < 0, D2: y > 0. Then similarly to [6] we can 

use instead of (1.3) the sewing conditions 

au a (x, y) ~ F, [.]= [p] --- o ; ~  I_=  ~ ( u  - Q ) I . ,  

where fl • = f(x, +0);  Q I + is the liquid consumption through the porous surface; ~ is a constant characterizing the porous 

medium near F. 

2. Conjugation of  Filtration Flow and Free Flow on the Well 's Wall. Let D 1 = {x > 0, 0 < y < h} be the domain 

corresponding to the symmetric (about y = h) part of the well, and let D 2 ={x  > 0, - H  < y < 0} be the domain of fluid 

filtration. 

The boundary conditions for Eqs. (1.1), (1.2) in the domains D 1, D 2, are of the form 

(u - u o ) l , . o  = o,  51 , -h  = o,  x >-. o; ~ l x . o  ffi "l(y) >1o, y >-. o; (2.1) 

ulx.o = 0, - H  ~ y ~ 0; "[y--u = "l(x) ' x >~ 0 (2.2) 

(u o = u ( x , - 0 ) ) .  

For py = C = const, y < 0 a particular solution u = 0, v = vl(x) of the problem (1.2), (2.2) exists in the domain 

D E, where Vn(X) in (2.2) is defined as the solution of the problem 

tp ~U - 1 c --  o ,  . 1 ( o )  0 ,  ffi - c a  -1 .  

Then for the problem (1.1), (2.1) in the well the first of the conditions (2.1) is of  the form Uly= o = (0, Vl(X)). 

The following analogue of the problem of continuation of the boundary layer can be considered instead of (2.1) in the 

domain D 1: 

(u - uo)l,.o=0, u ly .h=u2(x ) ,  x>~ 0; ulx.o -- ul(y ) >~ O, y ~ O. 

Here the velocity through the center of the well u2(x ) > 0 and the velocity profile at entry into the well ul(Y) - 0, 

y >_ 0 are considered as arbitrarily prescribed functions. 

3. Conjugation of  Filtration Flow and Free Flow at Entry  into the Well. Let a layer be unsealed by the symmetric 

(about y = 0) well without deepening [5, p. 419], and, respectively, 

D 1 = {0 < y < h, 0 < x <X}, D2={x< O, - H  < y < h}. 

The flow through the domains D 1 and D 2 (b = H), can be described by the solution of the boundary problems 

u l , , h= (u ,  u)l , .  o = 0, x >-- 0; ulx.o -- uo(y ), y >/0;  (3.1) 

(u -ut0 Ixffioffi0, y ~ 0; vlr.0 = Vl(X), x ~ 0 (3.2) 

for Eqs. (1.1), (1.2), respectively, where u o = (uo(y), v (+0,  y)) and uo(Y), vl(x ) are arbitrarily prescribed functions. 

If  at entry into the well the filtration flow is directed strictly along the well, i.e., V[y= o = 0, then u0(Y) = 

-(2/z)-lpx(0)(h2 - y2) is uniquely determined from the solution of the boundary problem 

/ 2 u ~  - px(O) = o,  uo(h ) = O, U'o(O ) = O. 
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Consider now the problem of sewing two boundary layers adjacent to the wall, when the straight line {y = 0, 0 < 

x < X}, is the well's wall, straight line {x = 0, y _< 0}, is the impermeable roof of the layer, and {x = 0, 0 _< y < h} is 

an entry into the well. 

According to this, there arise the following problems of continuation of the boundary layers (1.1) and (1.2) in the 

domains D 1 and D2: 

u l , . o  = 0 ,  u l , . ,  = ul(x), 0 ~ x ~ x; u~l~.o = 0 ,  y >~ o;  

(u - uo(y ), o)L-o = 0, ol,._. = v~(x), x ~ 0; 

(3.3) 

(3.4) 

t im o (x ,  y) = %(y) ,  - H  ~ y ~ h; (3 .5 )  

o| + p, + 20| = 0, o |  = o1(-** ), y >-- - H .  (3.6) 

Here uo(y ) = 0, y _< 0, and when y > 0 u 0 = (2/~)-lpx(0)(y + ul(0)yh -1 is determined from the solution of  the boundary 

problem 

/~u o' - px(O) = O, uo(O ) = O, Uo(h ) = ul(O),  

which is a consequence of (1.1), (3.3). 
4. Self-Similar Solutions. We insert the current function ~b(x, y) assuming that u = ~by, v = -~b x. Then Eqs. (1.1), 

(1.2) admit a self-similar solution of the form 

= y~o(~), ~ = y(nx+xo) -I/', x 0 = const, 

where the constants k and n are connected by the relation k = n - 1 for EQ. (1.1) and k = I - n for Eq. (1.2). 

Naturally, the conditions appear on the prescribed functions p(x, y) and X(x, y) involve the equation: 

p~ = 6r + Xo)(k-3)/. for (1.1), 6 Ct) = const; 

py ---- 6(2)y t-~,  ,~ ---- --6~2)y -21 for (1.2), (6 (2), 6Co 2)) = const. 

Then Eqs. (1.1), (1.2) transform into the quasilinear differential equations for the function ~a(~): 
3 

LC'%o -= ~ ~.(') a',, ,-o ' ~ - / ~ ' )  = o ( , , ,  = 1, 2) .  

Here 

(4.1) 

~.c;,,) = ,,, (m = 1, 2);  a~") = k(3~,.~ -1 + ~'~,,,,); 

tel) = 3~,k(k - 1 ) ~ - '  + 2 ~  ~-1 - (k  - 1 ) ~ o ' ;  ,t~" 
1 

= ~ k ( k  - I )  (k  - 2 )~-3;  

/(1) = 60)~-k; -2 'lr = 3/~(n + 1)~ -1 + /qa~-('+l); il~ 2) = / z ( n + l )  (2n 
~(2)~-2(n§ 1). + 1 )~  -2  + k(n + 1)~o~ -('*+2) - ( k  - n)~-('*+l)~o ' + % ~, 

y~2) = cic2)~-3(.+I); ~ic2) = 0. 
"'0 

The obvious consequences of  the sewing conditions (1.3) should be fulfilled on the sewing line, and the characteristics 

of the outer flows should be specified when ~ --, + co, for example 

, (I) for (I.I) , (/c.,V~ - I - / j r  )],~m,* = U., 

~+i '1 -- o(2) for (1.2> ,.~._| 
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Consider the special case of sewing the self-similar solutions of Eqs. (1.I), (1.2), corresponding to a flow of the 

Poiseuille type in the open stream (the domain D 1 (x > 0)): 

u = Cy 2, v = O, Px = 2C/z, 

so that in (4.1) m = 1, k = 3, n = 4, ~(~) = C = const. 

Then Eq. (4.1) with m = 2, k = 3, n = - 2 ,  ~ = y ( - 2 x )  1/2 (x < 0) corresponds to the filtration flow governed by 

Eq. (1.2). 

The sewing conditions and the specification of the outer filtration flow lead to the boundary problem for Eq. (4.1): 

1 
~(o) = ~c, ~,'(o) = o, ~-~I~.. = Co. 

5. The Existence Theorem. Consider the problem (1.1), (1.2), (3.3)-(3.6). Functions Ul(X), Vl(X) in (3.3), (3.4) 

specified on OD (D = D 1 U D2), p = pl(x), x >__ 0; p = P2(Y), Y -< 0 (Pl = Pl(0), Y > 0) in (1.1), (1.2), and the velocity 
v~.(y) of  the outer flow in a porous medium in (3.5), (3.6) are subject to the usual assumptions of the theory of a boundary 

layer [7-9]: 

( p p  p p  u p o l )  E C2+"(OD),  a > 0; P'l < 0, x >~ 0; 

P'2 < O,y<~O;v > 0 ,  y>---H; 
(u r u'~) > 0, x > 0, ul(0) > 0, u'~(0) -- 0; 

( %  u't) > 0 ,  x < 0 ,  u~(0) = 0, u'~(0) > 0; 

when Y = -- H, x ~ 0/zv' 1' - P '2(-/ ' / )  -- ~'vl = O(x2) �9 

(5.1) 

Here f(x, y) E C2+a(0D) if f and the second derivatives are bounded and HOlder continuous. 

Theorem 5.1. Let the assumptions (5.1) be fulfilled. Then in the domain D = D 1 U D 2 v (X, H) > 0 for some 

h > 0 there exists a solution u(x, y), v(x, y) of the problem (1.1), (1.2), (3.3)-(3.6), which possesses the properties: 

(u, u, u )  E C(D1), (v, u, 5) E C(~) V-~ 
(., ~, %) e C(D2), (u, u ,  5) e C(fZ2) V ~2 

au 
u(x, y) > 0 ,  "~yly=o ~ m I >0 ,  (x, y) E D,; 

~v 
0(X, y) >0, ~xl~.o >~ m 2 > 0, (x, y) E D 2. 

c DI; 

C D2; 

The problem (I.  1), (1.2), (3.3)-(3.6) falls into three problems, which are solved consequently in the domains D 1, D 3 

= { - o o  < x < 0, - H  < y < 0} and (D2\133). 
In the domain D 1 functions u(x, y), v(x, y) satisfy the problem (1.1), (3.3) for which the existence theorem stated 

above is proved like Theorem 1 in [7]. 

In the domain D 3 there arises the problem of continuation of the boundary layer (1.2) solvable for any u > 0 [7, 

8] by virtue of  the assumption P2'(Y) < 0, y < 0. 
Note that the velocity profile v 2 = v(x, y) I y=0, x < 0 resulting from the solution of the problem in D 3 has all the 

properties of vl(x) in (5. i). 

To find the solution u(x, y), v(x, y), (x, y) E (D2\D3) of the problem (1.2), (3.4)-(3.6) we transfer to Misses' 

variables: 

y = y ,  V~ = v / ( x ,  y ) ,  t., = - v / x ,  u - Uo(Y ) = v/v , 

In this case the condition v l y = _  H = Vl(X ) in (3.4) is replaced by V]y= o = va(x). As a result we get for co = v 2 
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coy - Uo(Y)C % --/zv~c%v - 22d~', (g,, y) ~ ~, (5.2) 

where fl = { -  oo < r < 0, 0 < y < h} is a mapping of (D2\D3). The conditions (3.4)-(3.6) transform into the following: 

,,,I,,.o = o ,  " l , . o  = tim ,,, = 

0 

= - a ,  u.(o) = u2(-**), % ( f  ,,2(OdO = 
x 

Upon differentiating, the term 2k~fo~ of Eq. (5.2) gives a function unbounded in k > O, no essential changes are needed 

to prove the existence of the solution of the problem (1.2), (3.4)-(3.6) in comparison with the case when k = 0 [7, 8]. 
Remark 5.1. The flow in a well may also be simulated by a Poiseuille flow. 
Remark 5.2.  It is not difficult to state problems similar to those from points 2, 3 for different models of 

nonhomogeneous fluid [10, 11] also. 
This work is supported in part by the Russian Fund for Fundamental Research. 
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